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Abstract 

There are many examples, in the literature, of 
algorithms for synthesizing state machines from 
scenario-based models. The motivation for these is to 
automate the transition from scenario-based 
requirements to early analysis and design models. A 
major challenge for such algorithms, however, is that 
the relationships between scenarios are usually not 
explicitly defined. This means that synthesis algorithms 
have to infer the relationships and this cannot 
generally be done without also inferring false 
positives. An alternative is to require users to explicitly 
give scenario relationships. The challenge here is that 
the additional burden placed on the user must be less 
than the effort saved by automatic synthesis. In this 
paper, we address this problem by defining a synthesis 
algorithm for use case charts, a language for precisely 
describing use cases and their relationships. Use case 
charts are sufficiently precise to allow the automatic 
generation of hierarchical state machines but retain 
the benefits of existing scenario-based notations by 
being based on UML. Use case charts provide an easy 
way of specifying scenario relationships but also have 
a formal semantics that can be used both in synthesis 
and to execute the use case charts. This paper presents 
the synthesis algorithm for use case charts and 
illustrates it on a significant example based on 
students’ solutions to an analysis and design problem. 

1. Introduction 

Since their introduction, use cases have become a 
method of choice for elaborating software 
requirements. A use case can be defined as a set of 
scenarios (including the “happy day” scenario and 
alternatives), where a scenario is an expected execution 
trace of a system. Use cases are a part of many major 
UML-based OOAD methodologies. Typically, they are 
used as a starting point for developing interaction 

diagrams which are in turn used in developing state 
machines for objects with state. 

The transition from interaction diagrams (e.g., UML 
sequence diagrams) to finite state machines (FSMs) is 
one of the key activities in OOAD. The transition is 
essentially from the global view of interaction 
diagrams to a local, object-based view. Each 
interaction diagram contributes to the state-based 
definition of one or more objects participating in the 
interaction. Many authors (e.g., [1,2,3]) have tried to 
automate the transition from interaction diagrams to 
FSMs. This is important research for the following 
reasons. First, it automates a key activity of many 
OOAD processes. Secondly, it transforms scenarios 
(given as interaction diagrams) into an executable form 
(namely, FSMs). Since FSMs are executable, they can 
be simulated. Hence, automation of the transformation 
is a way of simulating scenario-based requirements. 
The simulation can be used in requirements validation.  

Algorithms that transform scenarios into state 
machines are often called synthesis algorithms. There 
are two principal gaps in existing synthesis algorithms. 
Firstly, scenario-based specifications often do not 
make explicit the relationships between scenarios or 
between use cases. In other words, scenarios are 
written in isolation and their associations (e.g., 
overlapping, parallelism) are not specified. This is 
partly because early versions of UML did not support 
the specification of these relationships. This has 
changed in UML2.0 [4] which introduces interaction 
overview diagrams (IODs). In the absence of scenario 
relationships, synthesis algorithms have taken one of 
two approaches to elicit them. Either the algorithm 
infers the relationships (e.g., [3] uses inductive 
learning to do this) or the algorithm requires the 
scenario writer to explicitly give the relationships in 
some form (e.g., by explicitly identifying overlapping 
states [1]). The inference approach is problematic 
because it results in false positives. Specification of 
explicit relationships is problematic because it may 
rely on a non-standard methodology with which users 
are not familiar.  
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  This paper takes the approach of explicit 
relationship specification but does so in a way that is 
based on existing notations, namely UML. A notation 
for specifying use case scenarios, called use case 
charts, is used that is a natural extension of existing 
UML notations. The key contribution of this paper is a 
synthesis algorithm for use case charts. Use case 
charts, first introduced in [5], are a 3-level notation 
based on extended UML activity diagrams. The main 
application of use case charts to date has been to 
simulate use cases but use case charts are also precise 
enough for test generation and automated validation. 
Our synthesis algorithm goes beyond previous 
algorithms: 
• It takes into account a rich set of relationships 

between scenarios such as preemption, 
parallelism, negation. 

• It takes into account relationships between use 
cases—previous algorithms do not consider use 
case relationships, only scenario relationships. 

• It synthesizes hierarchical state machines which 
are therefore human-readable and can easily be 
built upon in subsequent analysis and design steps. 

The remainder of this paper is organized as follows. 
Section 2 describes use case charts. Section 3 is the 
main contribution—a synthesis algorithm for use case 
charts. Section 4 describes a preliminary validation on 
a significant example based on a set of students’ 
OOAD models. Section 5 compares our approach to 
related work and is followed by conclusions.

2. Use Case Charts 

Use case charts are a precisely defined, graphical 
language for use cases for which a formal semantics 
has been defined [6]. The idea behind use case charts is 
illustrated in Figure 1.

For the purposes of this paper, a use case is 
considered to be a set of scenarios, where a scenario is 
an expected execution trace of a system. The 
functionality of a system can be given as a set of use 
cases—that is, a set of sets of scenarios. A use case 
chart specifies the scenarios for a system’s use cases as 
a 3-level description: level-1 is the use case chart, an 
extended UML activity diagram in which the nodes are 
use cases; level-2 is a set of scenario charts, or 
extended activity diagrams where the nodes are 
scenarios; level-3 is a set of UML2.0 interaction 
diagrams. Each level-1 use case node is defined by a 
level-2 scenario chart (i.e., a set of connected scenario 
nodes). Each level-2 scenario node is defined by a 
UML2.0 interaction diagram. 

use case node

scenario node

Level 1: use case flow
(use case chart)

Level 2: scenario flow
(scenario chart for X)

Level 3: scenarios
(interaction diagram for Y)

*

X

Y

Figure 1: Use Case Charts. 

A formal denotational trace-based semantics for use 
case charts is given in [6]. Informally, control flow of 
the entire use case chart starts with the initial node of 
the use case chart (level-1). Flow then passes between 
use case nodes along the arrows of the level-1 activity 
diagram. When flow reaches a use case chart node at 
level-1, the level-2 scenario chart defining this node is 
executed, with flow starting from the scenario chart’s 
initial node. Flow exits a scenario node when a final 
node is reached. Scenario charts may have two types of 
final nodes—a final success node represents successful 
completion of the scenario chart and a final failure 
node represents completion but with failure. Flow only 
continues beyond the current use case node if a final 
success node is reached in the use case’s defining 
scenario chart. The semantics of each scenario chart is 
similar to that for high-level message sequence charts 
(hMSCs) [7]. Each scenario chart node is defined by a 
UML2.0 interaction diagram. Hence, when flow passes 
into a scenario chart node, the defining interaction 
diagram is executed. When the interaction diagram 
completes, flow returns to the level-2 scenario chart, 
exits the scenario node at that level and continues with 
the next scenario node. 

The intention is to reuse as much of the notation of 
UML2.0 as possible. This makes it easy for 
practitioners to learn the language. The activity 
diagrams used in use case charts and scenario charts 
are a restricted version of UML2.0 activity diagrams 
but with some additional relationships between nodes. 
They are restricted in that they do not include object 
flow, swimlanes, signals etc. They do include 
additional notations, however. The concrete syntax 
reuses as much of the activity diagram notation as 
possible. Informally, the allowed arrow types between 
nodes (either in use case or scenario charts) are given 
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as follows, where, for each arrow, X and Y are either 
both scenario nodes or both use case nodes: 
1. X continues from Y (i.e., the usual activity diagram 
arrow) 
2. X and Y are alternatives (the usual alternative 
defined by a condition) 
3. X and Y run in parallel (the usual activity diagram 
fork and join) 
4. X preempts Y—i.e., X interrupts Y and control does 
not return to Y once X is complete, shown by the 
stereotype <<preempts>> from X to Y. 
5. X suspends Y—i.e., X interrupts Y and control 
returns to Y once X is complete, shown by the 
stereotype <<suspends>> from X to Y. 
6. X is negative—i.e., the scenarios defined by X 
should never happen. This is shown by an arrow 
stereotyped with <<neg>> to X and where the source 
of the arrow is the region over which the scope of the 
negation applies. 
7. X may have multiple copies—i.e., X can run in 
parallel with itself any number of times. This is shown 
by an asterisk attached to node X. 

In addition, use case charts and scenario charts may 
have regions (graphically shown by dashed boxes) that 
scope nodes together. Arrows of type (4) and (5) may 
have a region as the target of the arrow. Arrows of type 
(6) and (7) may have a region as the source of the 
arrow. All other arrows do not link regions. Arrow 
types (4), (5), (6) are not part of UML2.0 activity 
diagrams (although there is a similar notation to (4) 
and (5) for interruption). Activity diagrams do have a 
notion of region for defining an interruptible set of 
nodes. Regions in use case charts, however, are a 
general-purpose scoping mechanism not restricted to 
defining interrupts. In addition, there are minor 
extensions to interaction diagrams. 

Use case charts are particularly suited for defining 
the scenarios in concurrent, distributed systems. Note 
that actors are not explicitly shown on use case 
charts—they appear instead as triggering participants 
at level 3. We do not intend use case charts to replace 
UML use case diagrams but rather to complement 
them. Therefore, we would expect actors to appear on 
use case diagrams as normal. 

2.1 Use Case Chart Example 

This section shows how to model an automated 
shuttle system case study [8] using use case charts. 
This case study is a non-trivial application based on 
“New Rail Technology Paderborn.” The University of 
Paderborn made this case study available as a 
benchmark problem. The case study is used in Section 
4 as a validation of our synthesis algorithm. 

 In the case study, autonomous shuttles transport 
passengers between stations. When a passenger 
requires transport, a central broker asks all active 
shuttles for bids on the transport order. The shuttle 
with the lowest bid wins. A complete set of 
requirements for this application is given in [8]. Figure 
2 shows level 1 of a use case chart that includes use 
cases for initialization of the system, maintenance and 
retirement of shuttles, and transportation (split into 
multiple use cases). Figure 3 is a scenario chart (level 
2) that defines the Carry Out Order use case. The Make 
a Bid use case consists of a single scenario and is 
shown as an interaction diagram (level 3) in Figure 4. 

Figure 2 gives the relationships between the major 
use cases and, for example, shows that there are 3 use 
cases involved in transporting a passenger. The 
execution of these use cases can be preempted by the 
retirement use case. Figure 3 is a refinement of the 
Carry Out Order use case. It consists of transporting a 
passenger and then informing a central broker that the 
task is complete. In addition, it states that a shuttle 
cannot move to an intermediate station during this 
transportation process (as specified in the 
requirements). Finally, Figure 4 is an interaction 
diagram of the bidding process. The interaction 
fragments all and exist mean, respectively, that all 
shuttles must receive new order information and at 
least one bid must be received by the Controller. The 
semantics of these fragments are explained in [6]. 

Maintenance

Make A Bid

Retirement
Make 

Payment

Carry Out 
Order

Initialization

<<preempts>>

Figure 2: Use Case Chart (Level 1) 

The motivation to have 3 levels is because level 1 
shows use case relationships whereas level 2 shows 
scenario relationships.  

2.2 Use Case Chart Syntax 

For completeness, we give here a formal definition 
of the use case chart abstract syntax. The concrete 
syntax is based on activity diagrams and has already 
been described. The abstract syntax for level 2 scenario 
charts is as follows. 
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A scenario chart (S, RS, ES, s0, SF, SF*, LS, fS, mS, LE)
is a graph where S is a set of scenario nodes, RS is a set 
of regions, ES ( ) ( )SS RSRS ∪Ρ×∪Ρ⊂  is a set of 
arrows, with labels from LE, s0 ∈ S is the unique initial 
node, SF ⊂ S is a set of final success nodes, SF* ⊂ S is 
a set of final failure nodes, LS is a set of scenario 
labels, fS : S  LS is a total, injective function mapping 
each scenario node to a label and ms : S ∪ RS  {+,-} 
is a total function marking whether or not each 
scenario or region can have multiple concurrent 
executions. The labels in LS are references to an 
interaction diagram. LE is defined to be the set 
{normal, neg, preempts, suspends}. LS is the set of 
words from some alphabet .

Move to 
intermediate 
station

Transport

<<neg>>

Inform 
Broker

Figure 3: Scenario Chart for Carry Out Order 

: Shuttle
<<multiobject>>

: Controller

3: makeBid

: Broker

1: newOrder

2: newOrder

4: makeBid

all

exist

Figure 4: Interaction Diagram for Make A Bid 

This definition describes a graph where edges may 
have multiple source nodes and multiple target nodes. 
This captures the notion of fork and join from activity 
diagrams which can be taken care of by allowing edges 
to have multiple source nodes and/or multiple target 
nodes. Multiple source nodes lead in the use case chart 
graphical notation to a join and multiple target nodes 
lead to a fork. An edge with both multiple sources and 
multiple targets is equivalent to a join followed by a 
fork. Regions are a scoping mechanism used to group 
scenario nodes.  

As stated previously, the intuition behind final 
success and final failure nodes is that a final success 
node denotes successful completion of the scenario 
chart; a final failure node denotes that the scenario 
chart completes but unsuccessfully.  

The definition omits the notion of conditions on 
edges, for the sake of clarity, but it is enough to say 
that guards could be placed on arrows leaving a node. 

The abstract syntax for a use case chart is almost 
identical except that a use case chart has only one type 
of final node (for success) and each use case node 
maps to a scenario chart not an interaction diagram. 
Only one type of final node is required for use case 
charts because there is no notion of success or 
failure—either a use case chart completes or it does 
not. 

UML2.0 sequence diagrams are defined by a 
metamodel in [4]. In the algorithm description in the 
next section, we view a sequence diagram as a 
sequence of events for each participant object, ordered 
vertically along the participant’s lifeline. An event can 
be a message, a UML2.0 continuation1, or a fragment. 
Fragments are defined recursively by a sequence of 
events. We assume that all messages are horizontal and 
that, for each sequence diagram, there is a single top-
level fragment with operator seq. According to this 
definition, the diagram in Figure 4 would be 
represented by three sequences, one for each 
participant. The event sequence for Broker is 
seq[newOrder, all[newOrder], exist[makeBid]], where 
[..] denotes a recursive definition. 

3. Synthesis of State Machines 

This section presents a synthesis algorithm for 
converting use case charts into a set of hierarchical 
state machines. The novelty of the algorithm is 
outlined in the three bullet points on page 2. 

3.1 Level 3 Synthesis 

This subsection details the conversion to 
hierarchical state machines for a level 3 UML2.0 
sequence diagram. In UML2.0, sequence diagrams 
consist of nested interaction fragments, each of which 
has an interaction operator. A sequence diagram has a 
single top-level fragment with the operator seq
denoting that the fragment operands are joined by 
weak sequential composition [4]. (Participants in 
different fragments joined by weak sequencing may 
progress independently of each other unless there are 
explicit messages sent between the participants.) Other 
operators considered here are par, opt, neg, alt, which 
define parallel, optional, negative and alternative 
sequences, respectively. The new operators all and 

                                                       
1 A continuation is essentially a label on a participant’s lifeline. Two 
continuations with the same name indicate that the continuations 
refer to the same state. Continuations have also been called state 
labels.
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exist are not dealt with here due to lack of space. We 
do not currently consider create/destroy messages or 
timing constraints. Table 1 gives the synthesis 
algorithm for a UML2.0 sequence diagram. It follows 
previously published algorithms such as [9] but also 
includes interaction fragments. For presentational 
purposes, some simplifying assumptions are made. We 
assume, for example, that all messages are 
asynchronous and horizontal. Figure 5 illustrates the 
synthesis algorithm for the interaction fragment 
operators and is given as an aid to understanding Table 
1. The LHS (left-hand-side) of the figure shows 
example sequence diagrams and the RHS (right-hand-
side) shows their translation into a state machine for B.

Input. A sequence diagram containing object O and a list of 
events e1,…,er along O’s lifeline. 
Output. A hierarchical finite state machine (HFSM) for O. 

1 Main 
2   let C := new HFSM(); 
3   C.setFirst(n0 := new State()); 
4   C.setLast(n1 := new State()); 
5   let curr_state := n0 ;
6   let negMap = new Map(); 
7   for i = 1,…,r do
8     processEvent(ei, C); 
9   done 
10  createTransition(curr_state, n1, nil, nil); 
11  foreach state in negMap 
12    let fsm := C.getsubFSM(negMap.get(state)); 
13    copyAndPointToError(state, fsm); 
14  done; 

15 processEvent (Event e, HFSM C) 
16  if (e is a message) addMessage (e, C); 
17  if (e is a label) addLabel (e, C); 
18  if (e is a fragment) { 
19    E := e.getEvents(); 
20    case e.getOperator() in 
21      “seq” : foreach ei in E(1) 
22                    processEvent(ei, C); 
23                  done 
24      “alt” : C.addState(endFrag := new State()); 
25                 tmp := curr_state; 
26                 foreach Ei in E 
27                   foreach ej in Ei
28                    processEvent(ej, C); 
29                  done 
30                   createTransition(curr_state, endFrag, nil, nil); 
31                   curr_state := tmp; 
32                 done 
33                 curr_state := endFrag; 
34      “par” : C.addState(endFrag := new State()); 
35                  tmp := curr_state; 
36                  C.addState(parState := new State()); 
37                  createTransition(curr_state, parState, nil, nil); 
38                  foreach Ei in E 
39                    parState.addRegion(R:=new OrthogRegion()); 

40                    C.addState(parInit := new State()); 
41                    R.setInitial(parInit); 
42                    curr_state := parInit; 
43                    foreach ej in Ei
44                       processEvent(ej, R); 
45                    done 
46                    createTransition(curr_state, endFrag, nil, nil); 
47                    curr_state := tmp; 
48                  done 
49                  curr_state := endFrag; 
50      “opt” : tmp := curr_state; 
51                  foreach ei in E(1) 
52                     processEvent(ei, C); 
53                  done 
54                  createTransition(curr_state, tmp, nil, nil); 
55                  curr_state := tmp; 
56      “neg” : tmp := curr_state; 
57                   foreach ei in E(1) 
58                      processEvent(ei, C); 
59                   done 
60                   negMap.put(curr_state, tmp); 
61                   curr_state := tmp; 
62    esac 
63  }                
64  return; 

65 addMessage (Event e, HFSM C) 
66   C.addState(n := new State()); 
67   if source(e) = O  
68    createTransition(curr_state, n, nil, e.getName()); 
69   else if target(e) = O 
70    createTransition(curr_state, n, e.getName(), nil); 
71   curr_state := n; 
72   return; 

73 addLabel (Event e, HFSM C) 
74   l := e.getName();   
75   State n := lookupLabel(l, C); 
76   if (n == nil) C.addState(n := new State(l)); 
77   createTransition(curr_state, n, nil, nil); 
78  return;  

Table 1: Sequence diagram synthesis. 

The input to Table 1 is a UML2.0 sequence 
diagram. The algorithm is given for a single object in 
the sequence diagram and it is assumed that the vertical 
ordering of fragments and messages along the lifeline 
for that object is known. Along the lifeline, there may 
be occurrences of messages, state labels or fragments. 
To capture this, we say that the input is a sequence of 
events e1,…,er along O’s lifeline. Fragment events 
recursively contain events. Synthesis for all objects is 
done by just applying the algorithm for each object. 
The output of the algorithm is a hierarchical state 
machine for O. The function getEvents in line 19 
returns the recursively defined set of events for a 
fragment. Since fragments may have multiple 
operands, getEvents returns an ordered set of 
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sequences of events where the cardinality of the set is 
the same as the number of operands. E(j) (e.g., see line 
21) is a projection operator that returns the jth element 
of an ordered set E.

The algorithm in Table 1 works as follows. The 
Main procedure creates a state machine for O with 
initial and final nodes and then processes the input 
events in sequence (lines 1-10). Negative fragments 
require special handling (lines 6 & 11-14). setFirst
(line 3) marks the initial state of a HFSM. Similarly, 
for setLast (line 4). These initial and final states are 
used as hooks to connect HFSMs generated from 
different sequence diagrams but that are related. (On 
the RHS of Figure 5, the greyed states are initial and 
the black states are final.) 

: A : B

mseq

m1par

m1opt

m1neg

m2

m2

m2

m/

m1/

m2/

m1/ m2/

m2/

m1/
m2/

m2/

ERR

Figure 5: Example Synthesis at Level 3 

The heart of the algorithm is the processEvent
procedure (line 15) which creates states and transitions 
for each event. Line 16 handles messages by calling 
addMessage (lines 65-72). A message directed away 
from O to another object becomes an action to send 
that message in the HFSM for O (lines 67-68). A 
message directed towards O becomes a triggering 
event in the HFSM and results in a transition to a new 
state (lines 69-70). createTransition(n,m,ev,ac) creates 
a transition from state n to state m with event ev and 
action ac. Either ev or ac may be empty (given as nil).  

A state label event results in a named state with that 
label (lines 17 and 73-78). All references of the label 
result in a transition to this labeled state. Line 75 
checks if a state with the same label already exists. If 
so, a transition is created to this state. Otherwise, a new 
state is created.  

A fragment’s events are recursively processed (lines 
18-63) and the fragment operator determines what kind 
of states are introduced into O’s HFSM – alt leads to 
branching states; par leads to a hierarchical state 
containing an orthogonal region; and opt gives two 

paths (with and without the optional events). neg leads 
to a path containing the negative events with a 
transition to a special ERROR state. That is, negation 
is handled by constructing a branch in the HFSM such 
that if this branch is taken, the entire HFSM goes into 
the ERROR state. seq just results in a new state with a 
transition from the current state. The pseudo-code for 
these operators is self-explanatory but Figure 5 gives 
some simple examples. 

In Table 1, Main contains special handling for the 
neg case (lines 11-14 & 56-61). A sequence of 
negative events (e.g., m1 in Figure 5) is usually 
followed by a sequence of positive events (e.g., m2 in 
Figure 5). The semantics of this is that the error only 
occurs if the negative events are followed by the 
positive events (i.e., m1, m2 in Figure 5). Hence, the 
positive events are replicated – they appear once for 
the positive case and once for the concatenation of the 
negative and positive events. The map in lines 6, 12 
and 60 in Table 1 is used to keep track of the points 
where this replication must occur. Once all processing 
of the negative events has occurred (line 59), the last 
state for the negative events is stored in the map 
(curr_state at line 60). Lines 11-14 paste the positive 
events onto the end of the last state for the negative 
events. This is done by querying the map to return the 
sub-state machine corresponding to the positive events 
(getsubFSM at line 12) and then copying this sub-state 
machine to the end of the negative events (line 13). 

3.2 Level 2 Synthesis 

Table 2 gives the algorithm for converting a level 2 
scenario chart into a HFSM. Again, the algorithm is 
given for a single object O but is easily extended to 
generate HFSMs for all participating objects.  

The input is a set of scenario nodes S1,…,Sp. S1 is 
the initial node of the scenario chart and Sp and Sp-1 are 
finalSuccess and finalFailure nodes, respectively. The 
scenario chart also contains regions r1,…,rq where each 
region contains a set of scenario nodes. Arrows a1,…,ar
are from sets of scenarios or regions to sets of 
scenarios or regions. The output is a HFSM for O. 

The Main procedure (lines 1-33) starts by 
recursively applying the level 3 synthesis algorithm to 
each scenario node (lines 2-7). The level 3 algorithm 
returns, for each scenario node, a HFSM for O with 
special first and last states (lines 5-6) that denote the 
initial and final state of the interaction diagram 
associated with the scenario node. (As stated earlier, 
these are given by grey and black states, respectively, 
in Figures 5 and 6.) Main then creates a new HFSM for 
O and copies there the states and transitions from each 
of the state machines derived from the scenario nodes 
(lines 8-18). This new HFSM has special final success 
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(see line 10) and final failure (see line 11) nodes that 
will be required during level 1 synthesis to connect the 
HFSMs for O generated for each use case node.  

Input. A scenario chart, containing object O, and consisting 
of scenarios S1,…,Sp (S1, Sp and Sp-1 being initial and 
finalSuccess/finalFailure nodes), regions r1,…,rq, arrows 
a1,…,ar between S1,…,Sp and/or  r1,…,rq
Output. HFSM for O  

1 Main.  
2   for i = 1,…, p do 
3     // Apply level 3 synthesis for Si.
4     let Ci := Si..convertToFSM(O); 
5     let firsti := Ci..getFirst(); 
6     let lasti := Ci..getLast(); 
7   done 
8   let C := new HFSM(); 
9   C.setFirst(n0 := new State()); 
10  C.setLastSuccess(n1 := new State()); 
11  C.setLastFailure(n2 := new State()); 
12  let curr_state := n0 ;
13  createTransition (n0, first1, nil, nil); 
14  createTransition (lastp-1, n1, nil, nil); 
15  createTransition (lastp, n2, nil, nil); 
16  for i = 1,…, p do 
17    Copy states and transitions from Ci to C 
18  done 

19   for i = 1,…,q do 
20     C.addState(hierarchicalStatei := new State()); 
21     foreach Sj in ri
22     Place Cj inside hierarchicalStatei
23   done 
       
24   for i = 1,…,r do 
25     case type(ai) in 
26       “sequential”: seqTransition (source(ai), target(ai)); 
27       “par”: parTransition(source(ai), target(ai)); 
28       “preempt”: preemptTransition(source(ai), target(ai)); 
29        “suspends”: suspendTransition(source(ai), target(ai)); 
30         “neg”: negTransition(ai); 
31     esac 
32   done 
33   return; 

34 seqTransition (Scenario Sj, Scenario Sk)
35   createTransition (lastj, firstk, nil, nil); 
36 return; 

37 preemptTransition (Scenario Sk, Region rj)
38   createTransition (hierarchicalStatej, firstk,   

Sk.getFirstMessage(), nil); 
39 return; 

40 suspendTransition (Scenario Sk, Region rj)
41   createTransition (hierarchicalStatej, firstk,

Sk.getFirstMessage(), nil); 
42   hierarchicalStatej.addHistoryMarker(); 
43   createTransition (lastk, hierarchicalStatej, nil, nil); 

44 return; 

45 parTransition (Scenario Set Zj, Scenario Set Zk)
46   OrthogonalState srcST = new State();        
47   OrthogonalState destST = new State(); 
48   srcST.createRegions(Zj); 
49   destST.createRegions(Zk); 
50   createTransition(srcST, destST, nil, nil); 
51 return; 

52 negTransition (Region rj, Scenario Sk)
53   OrthogonalState negST = new State();     
54   negST.createRegions({hierarchicalStatej, Sk}); 
55   let ERR_STATE := new state(); 
56   createTransition(lastk, ERR_STATE, nil, nil); 
57 return; 

Table 2: Scenario chart synthesis. 

S1 S2

States
from S1

States
from S2

S1 S4

S5
S2

S3

States from S1

States from S2
States from S3 States from S5

States from S4

S1
S4

S2

S3 <<preempts>>
States from 
S1, S2, S3 States

from S4

Preempting event from S4

e/

S1
S4

S2

S3 <<neg>>
States from 
S1, S2, S3

States
from S4

ERR

Figure 6: Level 2 Synthesis Examples 

Regions are handled by creating a new hierarchical 
state (lines 19-23). This hierarchical state contains all 
states generated for scenario nodes in that region. 

Arrows are dealt with according to what type of 
arrow they are (lines 24-33). Recall that the possible 
types (see abstract syntax definition is Section 2.2) are 
normal arrows (sequential transitions), parallel arrows, 
preempting arrows, suspending arrows and negative 
arrows. Figure 6 gives some simple examples. 
(Suspension is not shown because it is similar to 
preemption.) Sequential transitions merely connect 
HFSMs generated for two scenario nodes (lines 34-36). 
preemptTransition (lines 37-39) denotes the fact that a 
scenario node, Sk,, preempts a region, rj. rj is 
transformed into a hierarchical state. A transition 
leaves this hierarchical state with event the first 
message of Sk. This captures the fact that any state in 
the region can be preempted by this message. 
suspendTransition works similarly (lines 40-44). The 
only difference between preemption and suspension is 
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that once the suspending scenario is finished, control 
returns to the originating region. This is captured in the 
HFSM by introducing a history marker in the 
hierarchical state, so that the state caches its current 
state on exit, and a transition that returns to the 
hierarchical state once the suspending events are done. 

Parallel arrows (lines 45-51) are converted into 
orthogonal regions in the HFSM. Parallel arrows have 
multiple source and target scenario nodes (hence, the 
sets Zj, Zk in line 45). A state with orthogonal regions is 
created to hold the source scenario nodes (with one 
orthogonal region for each source node) and, similarly, 
each target scenario node appears in the output in an 
orthogonal region. A transition is then introduced in 
the HFSM to handle the parallel arrow from the source 
orthogonal state to the target orthogonal state.  
Finally, negative arrows also result in orthogonal 
regions in the output (lines 52-57). Negation is handled 
by monitoring for the negative events and transitioning 
to a special ERROR state if they occur. This is similar 
to level 3 synthesis. At level 2, the negative events 
under monitor are placed into an orthogonal region so 
that if the sequence of negative events ever occurs 
(even with other events interleaved), then the ERROR 
state will be entered. Note that the interpretation of 
negation is slightly different at level 2 than at level 3. 
At level 2, a negative sequence may have other 
messages interleaved with it. At level 3, however, the 
negative sequence is the flattening of the neg 
fragments. See [6] for details. 

3.3 Level 1 Synthesis 

Due to space restrictions, we do not give the 
algorithm for level 1 synthesis. The algorithm is almost 
identical to that in Table 2 except that level 1 use case 
charts have only one type of final node. The other 
difference is that HFSMs generated at level 1 are 
connected taking into account final failure and final 
success nodes generated at level 2. 

3.4 Synthesis Example 

This section gives an example of synthesis for the 
use case chart of the shuttle system described in 
Section 2. Figure 2 is the level 1 chart. Figures 3 and 4 
are refinements. The shuttle system example was 
specified completely in our SCASP tool. SCASP 
implements the synthesis algorithm described in this 
paper and allows the user to specify a use case chart 
and to generate and view HFSMs graphically.  

Figure 7 gives the HFSM generated for the Shuttle 
class based on the use case chart defined in Figures 2-
4. Figure 7 is a simplified version of the full example 
and was generated by giving very simple sequence 

diagrams at level 3 for each scenario node. The full 
example is reported on in Section 4 but the complete 
HFSM cannot be given due to its size. (Note that both 
preemption/suspension assume a priority of outermost 
transition selection in the state machine semantics.) 
However, even a simplified form of this example 
shows the power of the synthesis algorithm because a 
rich hierarchy of states is automatically generated. 

ERR

sendCapital/ack
sendCapacity/ack

maintenaceReqd/
scheduleMaintenance

maintenanceDone/

newOrder/
makeBid transport/

informBroker

makepayment/

moveElsewhere/

retireShuttle/
ack

shuttleRetired/

Figure 7: HFSM Generated for Shuttle 

There are a number of hierarchical states generated 
in Figure 7. At the top level, there are two orthogonal 
regions—one for maintenance and one for 
transportation. This mirrors the parallel fork in Figure 
2. The transportation region is further divided. The use 
case chart region in Figure 2 (denoted by the dotted 
rectangle) becomes a hierarchical state in Figure 7. 
This entire hierarchical state is exited if the retirement 
event occurs. This corresponds to the preempting 
arrow in Figure 2. Within the hierarchical state for 
transportation, there is a further division into 
orthogonal regions. This is done to capture the negative 
behavior from Figure 3. Recall that Figure 3 says that a 
shuttle cannot move to an intermediate station while it 
is transporting a passenger. If it does, the HFSM goes 
into the special ERR state. This is captured in the 
generated HFSM by introducing an orthogonal region 
for the negative behavior that essentially monitors for 
that behavior—if, at any point during the transport, the 
event moveElsewhere arrives, then ERR is entered. 

4. Results 

As a preliminary validation of use case chart 
synthesis, we implemented a prototype tool, SCASP, 
that takes any use case chart as input and generates a 
set of HFSMs, one for each object with state-dependent 
behavior. SCASP is implemented as an Eclipse plugin 
and the use case charts can be created using IBM 
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Rational Software Modeler (RSM) where each level is 
represented using standard UML 2.0 notations.  

So far, we have used SCASP to generate HFSMs 
for a number of industrial or industrial-strength 
examples. We applied it to a weather update subsystem 
of an air traffic control system developed at NASA 
[10]. We have also applied SCASP to a complete 
version of the shuttle system case study already 
introduced in this paper. SCASP can be applied at 
multiple phases of the software lifecycle. It can be 
applied during requirements development when the use 
cases are black-box, with no internal details of the 
system. Alternatively, it can be applied during 
requirements analysis, when internal objects are 
identified. For the shuttle system, we applied SCASP 
at the requirements analysis phase. We used the shuttle 
system as a term project in a software architecture and 
design graduate course at George Mason University. 
We then took student solutions to the requirements 
analysis phase and reengineered them into a use case 
chart specification. This involved taking a collection of 
UML interaction diagrams and adding structure using 
the 3-level layering in use case charts. We did not have 
students write the use case charts directly because of 
the training time that would be needed. This is 
regarded as future work. Even so, this exercise showed 
that it is possible to represent complex analysis models 
with use case charts and, moreover, synthesis of 
correct HFSMs can be automatically generated using 
SCASP. Table 3 gives an indication of the complexity 
of the use case chart for the shuttle system at the 
analysis level and of the generated HFSMs.  

The data in Table 3 provides evidence of the 
scalability of the use case chart notation and the 
synthesis algorithm. The example was industrial-
strength in size but also used many of the more 
complex arrow types such as preemption and negation. 
The 3-level structure of use case charts allow a wide 
range of behavior to be specified in a controllable way. 
If UML2.0 sequence diagrams alone had been used to 
capture the same information, the number of modeling 
elements needed would be at least an order of 
magnitude larger. Indeed, it would be extremely 
difficult if not impossible to capture some of the more 
complex behavior, such as preemption. 

The table also gives an indication of the size and 
complexity of the HFSMs generated. These data do 
not, of course, provide any evidence of how easy it is 
to develop the use case chart.  

Table 3:  Size/complexity of shuttle system study 
Use Case Chart Data 
Node-related data 
# level 1 nodes 
# level 1 regions 

7
1

# level 2 nodes 
# level 2 regions 

10
1

# participating objects at level 3 (average per 
sequence diagram) 

7.2 

# interaction fragments at level 3 23 
# messages at level 3 144 
Arrow-related data 
# arrows at level 1 of type: 
               sequential 
               parallel 
               preempting 
               negating 

6
3
1
0

# arrows at level 2 of type: 
               sequential 
               parallel 
               preempting 
               negating 

2
0
0
1

Generated HFSM Data 
# state dependent objects 
# generated states  
# generated hierarchical states 
# generated orthogonal regions 

7
117
4
9

# generated transitions 184 

5. Related Work 

UML2.0 [4] introduces interaction overview 
diagrams, a notation based on activity diagrams, for 
specifying relationships between interaction diagrams 
(e.g., sequence diagrams). Interaction overview 
diagrams (IODs) can be used to more precisely 
describe use cases by a set of interaction diagrams 
connected by activity diagram relationships, e.g., 
concurrency. Whilst IODs provide much needed 
expressiveness for relating interaction scenarios, their 
semantics is still somewhat unclear since neither 
activity nor interaction diagrams have a formal 
semantics. In addition, IODs model only a single use 
case at a time and do not specify relationships between 
use cases. In essence, use case charts add a third layer 
of relationships to IODs at the use case level (level 1). 
They also introduce relationships that do not currently 
exist in UML, as noted in Section 2. Some of these 
relationships have been suggested by other authors – 
e.g., Krüger [1] introduces preemption. There is no 
existing synthesis algorithm for IODs or these 
additional relationships.  

The use of scenarios in requirements engineering, 
has ranged from informal sketching to precise 
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specification [11]. The Inquiry Cycle [12] combines 
goal-oriented requirements analysis with scenario 
scripts and is extended in [13] by exception and 
dependency analysis. CREWS-SAVRE [14] included a 
technique for discovering scenarios using a library of 
domain-specific alternative paths. [15] uses a notation 
known as scenario networks to structure a scenario 
walkthrough process. Use case charts are different in 
that they remain very close to UML and so do not 
require a significant learning curve. 

There have been many papers on synthesizing state 
machines from scenario-based notations such as UML 
sequence diagrams [e.g., 9], message sequence charts 
[e.g., 1, 16] and live sequence charts [2]. These 
synthesis algorithms have to deal with the fact that 
current notations do not allow easy specifications of 
use case and/or scenario relationships. One approach 
has been to try to infer these relationships 
automatically using machine learning techniques ([3]). 
Another has been to require the user to provide 
additional information, in a non-standard way, that can 
be used to infer the relationships (e.g., [9,1]). Use case 
charts externalize these relationships. We believe that 
there is no synthesis algorithm in the literature as 
sophisticated as our algorithm for use case charts. Most 
existing algorithms cannot generate hierarchy in the 
state machines and cannot handle the rich set of 
relationships that use case charts provide. 

6. Conclusion and Further Work 

This paper presented a new algorithm for 
converting use-case based requirements into 
hierarchical finite state machines (HFSMs). This 
algorithm has been implemented in the SCASP tool 
and supports automatic simulation and validation of 
use case scenarios via conversion to executable 
HFSMs. The algorithm is novel in that it works for a 
very expressive use case language, use case charts, 
suitable in particular for distributed, concurrent 
systems. It is also novel in that the FSMs generated 
contain rich hierarchy which makes the generated 
FSMs easier for human consumption during later 
stages of analysis and design. The algorithm was 
validated on significant examples, including the use of 
solutions to a large term project. In the future, 
empirical studies will be undertaken to further evaluate 
use case charts and the use of the generated HFSMs in 
requirements validation. 
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