
Generating Hierarchical State Machines from Use Case Charts

Jon Whittle
Information & Software Engineering

George Mason University
Fairfax VA 22030

jwhittle@ise.gmu.edu

Praveen K. Jayaraman
Information & Software Engineering

George Mason University
Fairfax VA 22030

pjayara1@gmu.edu

Abstract

There are many examples, in the literature, of
algorithms for synthesizing state machines from
scenario-based models. The motivation for these is to
automate the transition from scenario-based
requirements to early analysis and design models. A
major challenge for such algorithms, however, is that
the relationships between scenarios are usually not
explicitly defined. This means that synthesis algorithms
have to infer the relationships and this cannot
generally be done without also inferring false
positives. An alternative is to require users to explicitly
give scenario relationships. The challenge here is that
the additional burden placed on the user must be less
than the effort saved by automatic synthesis. In this
paper, we address this problem by defining a synthesis
algorithm for use case charts, a language for precisely
describing use cases and their relationships. Use case
charts are sufficiently precise to allow the automatic
generation of hierarchical state machines but retain
the benefits of existing scenario-based notations by
being based on UML. Use case charts provide an easy
way of specifying scenario relationships but also have
a formal semantics that can be used both in synthesis
and to execute the use case charts. This paper presents
the synthesis algorithm for use case charts and
illustrates it on a significant example based on
students’ solutions to an analysis and design problem.

1. Introduction

Since their introduction, use cases have become a
method of choice for elaborating software
requirements. A use case can be defined as a set of
scenarios (including the “happy day” scenario and
alternatives), where a scenario is an expected execution
trace of a system. Use cases are a part of many major
UML-based OOAD methodologies. Typically, they are
used as a starting point for developing interaction

diagrams which are in turn used in developing state
machines for objects with state.

The transition from interaction diagrams (e.g., UML
sequence diagrams) to finite state machines (FSMs) is
one of the key activities in OOAD. The transition is
essentially from the global view of interaction
diagrams to a local, object-based view. Each
interaction diagram contributes to the state-based
definition of one or more objects participating in the
interaction. Many authors (e.g., [1,2,3]) have tried to
automate the transition from interaction diagrams to
FSMs. This is important research for the following
reasons. First, it automates a key activity of many
OOAD processes. Secondly, it transforms scenarios
(given as interaction diagrams) into an executable form
(namely, FSMs). Since FSMs are executable, they can
be simulated. Hence, automation of the transformation
is a way of simulating scenario-based requirements.
The simulation can be used in requirements validation.

Algorithms that transform scenarios into state
machines are often called synthesis algorithms. There
are two principal gaps in existing synthesis algorithms.
Firstly, scenario-based specifications often do not
make explicit the relationships between scenarios or
between use cases. In other words, scenarios are
written in isolation and their associations (e.g.,
overlapping, parallelism) are not specified. This is
partly because early versions of UML did not support
the specification of these relationships. This has
changed in UML2.0 [4] which introduces interaction
overview diagrams (IODs). In the absence of scenario
relationships, synthesis algorithms have taken one of
two approaches to elicit them. Either the algorithm
infers the relationships (e.g., [3] uses inductive
learning to do this) or the algorithm requires the
scenario writer to explicitly give the relationships in
some form (e.g., by explicitly identifying overlapping
states [1]). The inference approach is problematic
because it results in false positives. Specification of
explicit relationships is problematic because it may
rely on a non-standard methodology with which users
are not familiar.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

 This paper takes the approach of explicit
relationship specification but does so in a way that is
based on existing notations, namely UML. A notation
for specifying use case scenarios, called use case
charts, is used that is a natural extension of existing
UML notations. The key contribution of this paper is a
synthesis algorithm for use case charts. Use case
charts, first introduced in [5], are a 3-level notation
based on extended UML activity diagrams. The main
application of use case charts to date has been to
simulate use cases but use case charts are also precise
enough for test generation and automated validation.
Our synthesis algorithm goes beyond previous
algorithms:
• It takes into account a rich set of relationships

between scenarios such as preemption,
parallelism, negation.

• It takes into account relationships between use
cases—previous algorithms do not consider use
case relationships, only scenario relationships.

• It synthesizes hierarchical state machines which
are therefore human-readable and can easily be
built upon in subsequent analysis and design steps.

The remainder of this paper is organized as follows.
Section 2 describes use case charts. Section 3 is the
main contribution—a synthesis algorithm for use case
charts. Section 4 describes a preliminary validation on
a significant example based on a set of students’
OOAD models. Section 5 compares our approach to
related work and is followed by conclusions.

2. Use Case Charts

Use case charts are a precisely defined, graphical
language for use cases for which a formal semantics
has been defined [6]. The idea behind use case charts is
illustrated in Figure 1.

For the purposes of this paper, a use case is
considered to be a set of scenarios, where a scenario is
an expected execution trace of a system. The
functionality of a system can be given as a set of use
cases—that is, a set of sets of scenarios. A use case
chart specifies the scenarios for a system’s use cases as
a 3-level description: level-1 is the use case chart, an
extended UML activity diagram in which the nodes are
use cases; level-2 is a set of scenario charts, or
extended activity diagrams where the nodes are
scenarios; level-3 is a set of UML2.0 interaction
diagrams. Each level-1 use case node is defined by a
level-2 scenario chart (i.e., a set of connected scenario
nodes). Each level-2 scenario node is defined by a
UML2.0 interaction diagram.

use case node

scenario node

Level 1: use case flow
(use case chart)

Level 2: scenario flow
(scenario chart for X)

Level 3: scenarios
(interaction diagram for Y)

*

X

Y

Figure 1: Use Case Charts.

A formal denotational trace-based semantics for use
case charts is given in [6]. Informally, control flow of
the entire use case chart starts with the initial node of
the use case chart (level-1). Flow then passes between
use case nodes along the arrows of the level-1 activity
diagram. When flow reaches a use case chart node at
level-1, the level-2 scenario chart defining this node is
executed, with flow starting from the scenario chart’s
initial node. Flow exits a scenario node when a final
node is reached. Scenario charts may have two types of
final nodes—a final success node represents successful
completion of the scenario chart and a final failure
node represents completion but with failure. Flow only
continues beyond the current use case node if a final
success node is reached in the use case’s defining
scenario chart. The semantics of each scenario chart is
similar to that for high-level message sequence charts
(hMSCs) [7]. Each scenario chart node is defined by a
UML2.0 interaction diagram. Hence, when flow passes
into a scenario chart node, the defining interaction
diagram is executed. When the interaction diagram
completes, flow returns to the level-2 scenario chart,
exits the scenario node at that level and continues with
the next scenario node.

The intention is to reuse as much of the notation of
UML2.0 as possible. This makes it easy for
practitioners to learn the language. The activity
diagrams used in use case charts and scenario charts
are a restricted version of UML2.0 activity diagrams
but with some additional relationships between nodes.
They are restricted in that they do not include object
flow, swimlanes, signals etc. They do include
additional notations, however. The concrete syntax
reuses as much of the activity diagram notation as
possible. Informally, the allowed arrow types between
nodes (either in use case or scenario charts) are given

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

as follows, where, for each arrow, X and Y are either
both scenario nodes or both use case nodes:
1. X continues from Y (i.e., the usual activity diagram
arrow)
2. X and Y are alternatives (the usual alternative
defined by a condition)
3. X and Y run in parallel (the usual activity diagram
fork and join)
4. X preempts Y—i.e., X interrupts Y and control does
not return to Y once X is complete, shown by the
stereotype <<preempts>> from X to Y.
5. X suspends Y—i.e., X interrupts Y and control
returns to Y once X is complete, shown by the
stereotype <<suspends>> from X to Y.
6. X is negative—i.e., the scenarios defined by X
should never happen. This is shown by an arrow
stereotyped with <<neg>> to X and where the source
of the arrow is the region over which the scope of the
negation applies.
7. X may have multiple copies—i.e., X can run in
parallel with itself any number of times. This is shown
by an asterisk attached to node X.

In addition, use case charts and scenario charts may
have regions (graphically shown by dashed boxes) that
scope nodes together. Arrows of type (4) and (5) may
have a region as the target of the arrow. Arrows of type
(6) and (7) may have a region as the source of the
arrow. All other arrows do not link regions. Arrow
types (4), (5), (6) are not part of UML2.0 activity
diagrams (although there is a similar notation to (4)
and (5) for interruption). Activity diagrams do have a
notion of region for defining an interruptible set of
nodes. Regions in use case charts, however, are a
general-purpose scoping mechanism not restricted to
defining interrupts. In addition, there are minor
extensions to interaction diagrams.

Use case charts are particularly suited for defining
the scenarios in concurrent, distributed systems. Note
that actors are not explicitly shown on use case
charts—they appear instead as triggering participants
at level 3. We do not intend use case charts to replace
UML use case diagrams but rather to complement
them. Therefore, we would expect actors to appear on
use case diagrams as normal.

2.1 Use Case Chart Example

This section shows how to model an automated
shuttle system case study [8] using use case charts.
This case study is a non-trivial application based on
“New Rail Technology Paderborn.” The University of
Paderborn made this case study available as a
benchmark problem. The case study is used in Section
4 as a validation of our synthesis algorithm.

 In the case study, autonomous shuttles transport
passengers between stations. When a passenger
requires transport, a central broker asks all active
shuttles for bids on the transport order. The shuttle
with the lowest bid wins. A complete set of
requirements for this application is given in [8]. Figure
2 shows level 1 of a use case chart that includes use
cases for initialization of the system, maintenance and
retirement of shuttles, and transportation (split into
multiple use cases). Figure 3 is a scenario chart (level
2) that defines the Carry Out Order use case. The Make
a Bid use case consists of a single scenario and is
shown as an interaction diagram (level 3) in Figure 4.

Figure 2 gives the relationships between the major
use cases and, for example, shows that there are 3 use
cases involved in transporting a passenger. The
execution of these use cases can be preempted by the
retirement use case. Figure 3 is a refinement of the
Carry Out Order use case. It consists of transporting a
passenger and then informing a central broker that the
task is complete. In addition, it states that a shuttle
cannot move to an intermediate station during this
transportation process (as specified in the
requirements). Finally, Figure 4 is an interaction
diagram of the bidding process. The interaction
fragments all and exist mean, respectively, that all
shuttles must receive new order information and at
least one bid must be received by the Controller. The
semantics of these fragments are explained in [6].

Maintenance

Make A Bid

Retirement
Make

Payment

Carry Out
Order

Initialization

<<preempts>>

Figure 2: Use Case Chart (Level 1)

The motivation to have 3 levels is because level 1
shows use case relationships whereas level 2 shows
scenario relationships.

2.2 Use Case Chart Syntax

For completeness, we give here a formal definition
of the use case chart abstract syntax. The concrete
syntax is based on activity diagrams and has already
been described. The abstract syntax for level 2 scenario
charts is as follows.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

A scenario chart (S, RS, ES, s0, SF, SF*, LS, fS, mS, LE)
is a graph where S is a set of scenario nodes, RS is a set
of regions, ES () ()SS RSRS ∪Ρ×∪Ρ⊂ is a set of
arrows, with labels from LE, s0 ∈ S is the unique initial
node, SF ⊂ S is a set of final success nodes, SF* ⊂ S is
a set of final failure nodes, LS is a set of scenario
labels, fS : S LS is a total, injective function mapping
each scenario node to a label and ms : S ∪ RS {+,-}
is a total function marking whether or not each
scenario or region can have multiple concurrent
executions. The labels in LS are references to an
interaction diagram. LE is defined to be the set
{normal, neg, preempts, suspends}. LS is the set of
words from some alphabet .

Move to
intermediate
station

Transport

<<neg>>

Inform
Broker

Figure 3: Scenario Chart for Carry Out Order

: Shuttle
<<multiobject>>

: Controller

3: makeBid

: Broker

1: newOrder

2: newOrder

4: makeBid

all

exist

Figure 4: Interaction Diagram for Make A Bid

This definition describes a graph where edges may
have multiple source nodes and multiple target nodes.
This captures the notion of fork and join from activity
diagrams which can be taken care of by allowing edges
to have multiple source nodes and/or multiple target
nodes. Multiple source nodes lead in the use case chart
graphical notation to a join and multiple target nodes
lead to a fork. An edge with both multiple sources and
multiple targets is equivalent to a join followed by a
fork. Regions are a scoping mechanism used to group
scenario nodes.

As stated previously, the intuition behind final
success and final failure nodes is that a final success
node denotes successful completion of the scenario
chart; a final failure node denotes that the scenario
chart completes but unsuccessfully.

The definition omits the notion of conditions on
edges, for the sake of clarity, but it is enough to say
that guards could be placed on arrows leaving a node.

The abstract syntax for a use case chart is almost
identical except that a use case chart has only one type
of final node (for success) and each use case node
maps to a scenario chart not an interaction diagram.
Only one type of final node is required for use case
charts because there is no notion of success or
failure—either a use case chart completes or it does
not.

UML2.0 sequence diagrams are defined by a
metamodel in [4]. In the algorithm description in the
next section, we view a sequence diagram as a
sequence of events for each participant object, ordered
vertically along the participant’s lifeline. An event can
be a message, a UML2.0 continuation1, or a fragment.
Fragments are defined recursively by a sequence of
events. We assume that all messages are horizontal and
that, for each sequence diagram, there is a single top-
level fragment with operator seq. According to this
definition, the diagram in Figure 4 would be
represented by three sequences, one for each
participant. The event sequence for Broker is
seq[newOrder, all[newOrder], exist[makeBid]], where
[..] denotes a recursive definition.

3. Synthesis of State Machines

This section presents a synthesis algorithm for
converting use case charts into a set of hierarchical
state machines. The novelty of the algorithm is
outlined in the three bullet points on page 2.

3.1 Level 3 Synthesis

This subsection details the conversion to
hierarchical state machines for a level 3 UML2.0
sequence diagram. In UML2.0, sequence diagrams
consist of nested interaction fragments, each of which
has an interaction operator. A sequence diagram has a
single top-level fragment with the operator seq
denoting that the fragment operands are joined by
weak sequential composition [4]. (Participants in
different fragments joined by weak sequencing may
progress independently of each other unless there are
explicit messages sent between the participants.) Other
operators considered here are par, opt, neg, alt, which
define parallel, optional, negative and alternative
sequences, respectively. The new operators all and

1 A continuation is essentially a label on a participant’s lifeline. Two
continuations with the same name indicate that the continuations
refer to the same state. Continuations have also been called state
labels.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

exist are not dealt with here due to lack of space. We
do not currently consider create/destroy messages or
timing constraints. Table 1 gives the synthesis
algorithm for a UML2.0 sequence diagram. It follows
previously published algorithms such as [9] but also
includes interaction fragments. For presentational
purposes, some simplifying assumptions are made. We
assume, for example, that all messages are
asynchronous and horizontal. Figure 5 illustrates the
synthesis algorithm for the interaction fragment
operators and is given as an aid to understanding Table
1. The LHS (left-hand-side) of the figure shows
example sequence diagrams and the RHS (right-hand-
side) shows their translation into a state machine for B.

Input. A sequence diagram containing object O and a list of
events e1,…,er along O’s lifeline.
Output. A hierarchical finite state machine (HFSM) for O.

1 Main
2 let C := new HFSM();
3 C.setFirst(n0 := new State());
4 C.setLast(n1 := new State());
5 let curr_state := n0 ;
6 let negMap = new Map();
7 for i = 1,…,r do
8 processEvent(ei, C);
9 done
10 createTransition(curr_state, n1, nil, nil);
11 foreach state in negMap
12 let fsm := C.getsubFSM(negMap.get(state));
13 copyAndPointToError(state, fsm);
14 done;

15 processEvent (Event e, HFSM C)
16 if (e is a message) addMessage (e, C);
17 if (e is a label) addLabel (e, C);
18 if (e is a fragment) {
19 E := e.getEvents();
20 case e.getOperator() in
21 “seq” : foreach ei in E(1)
22 processEvent(ei, C);
23 done
24 “alt” : C.addState(endFrag := new State());
25 tmp := curr_state;
26 foreach Ei in E
27 foreach ej in Ei
28 processEvent(ej, C);
29 done
30 createTransition(curr_state, endFrag, nil, nil);
31 curr_state := tmp;
32 done
33 curr_state := endFrag;
34 “par” : C.addState(endFrag := new State());
35 tmp := curr_state;
36 C.addState(parState := new State());
37 createTransition(curr_state, parState, nil, nil);
38 foreach Ei in E
39 parState.addRegion(R:=new OrthogRegion());

40 C.addState(parInit := new State());
41 R.setInitial(parInit);
42 curr_state := parInit;
43 foreach ej in Ei
44 processEvent(ej, R);
45 done
46 createTransition(curr_state, endFrag, nil, nil);
47 curr_state := tmp;
48 done
49 curr_state := endFrag;
50 “opt” : tmp := curr_state;
51 foreach ei in E(1)
52 processEvent(ei, C);
53 done
54 createTransition(curr_state, tmp, nil, nil);
55 curr_state := tmp;
56 “neg” : tmp := curr_state;
57 foreach ei in E(1)
58 processEvent(ei, C);
59 done
60 negMap.put(curr_state, tmp);
61 curr_state := tmp;
62 esac
63 }
64 return;

65 addMessage (Event e, HFSM C)
66 C.addState(n := new State());
67 if source(e) = O
68 createTransition(curr_state, n, nil, e.getName());
69 else if target(e) = O
70 createTransition(curr_state, n, e.getName(), nil);
71 curr_state := n;
72 return;

73 addLabel (Event e, HFSM C)
74 l := e.getName();
75 State n := lookupLabel(l, C);
76 if (n == nil) C.addState(n := new State(l));
77 createTransition(curr_state, n, nil, nil);
78 return;

Table 1: Sequence diagram synthesis.

The input to Table 1 is a UML2.0 sequence
diagram. The algorithm is given for a single object in
the sequence diagram and it is assumed that the vertical
ordering of fragments and messages along the lifeline
for that object is known. Along the lifeline, there may
be occurrences of messages, state labels or fragments.
To capture this, we say that the input is a sequence of
events e1,…,er along O’s lifeline. Fragment events
recursively contain events. Synthesis for all objects is
done by just applying the algorithm for each object.
The output of the algorithm is a hierarchical state
machine for O. The function getEvents in line 19
returns the recursively defined set of events for a
fragment. Since fragments may have multiple
operands, getEvents returns an ordered set of

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

sequences of events where the cardinality of the set is
the same as the number of operands. E(j) (e.g., see line
21) is a projection operator that returns the jth element
of an ordered set E.

The algorithm in Table 1 works as follows. The
Main procedure creates a state machine for O with
initial and final nodes and then processes the input
events in sequence (lines 1-10). Negative fragments
require special handling (lines 6 & 11-14). setFirst
(line 3) marks the initial state of a HFSM. Similarly,
for setLast (line 4). These initial and final states are
used as hooks to connect HFSMs generated from
different sequence diagrams but that are related. (On
the RHS of Figure 5, the greyed states are initial and
the black states are final.)

: A : B

mseq

m1par

m1opt

m1neg

m2

m2

m2

m/

m1/

m2/

m1/ m2/

m2/

m1/
m2/

m2/

ERR

Figure 5: Example Synthesis at Level 3

The heart of the algorithm is the processEvent
procedure (line 15) which creates states and transitions
for each event. Line 16 handles messages by calling
addMessage (lines 65-72). A message directed away
from O to another object becomes an action to send
that message in the HFSM for O (lines 67-68). A
message directed towards O becomes a triggering
event in the HFSM and results in a transition to a new
state (lines 69-70). createTransition(n,m,ev,ac) creates
a transition from state n to state m with event ev and
action ac. Either ev or ac may be empty (given as nil).

A state label event results in a named state with that
label (lines 17 and 73-78). All references of the label
result in a transition to this labeled state. Line 75
checks if a state with the same label already exists. If
so, a transition is created to this state. Otherwise, a new
state is created.

A fragment’s events are recursively processed (lines
18-63) and the fragment operator determines what kind
of states are introduced into O’s HFSM – alt leads to
branching states; par leads to a hierarchical state
containing an orthogonal region; and opt gives two

paths (with and without the optional events). neg leads
to a path containing the negative events with a
transition to a special ERROR state. That is, negation
is handled by constructing a branch in the HFSM such
that if this branch is taken, the entire HFSM goes into
the ERROR state. seq just results in a new state with a
transition from the current state. The pseudo-code for
these operators is self-explanatory but Figure 5 gives
some simple examples.

In Table 1, Main contains special handling for the
neg case (lines 11-14 & 56-61). A sequence of
negative events (e.g., m1 in Figure 5) is usually
followed by a sequence of positive events (e.g., m2 in
Figure 5). The semantics of this is that the error only
occurs if the negative events are followed by the
positive events (i.e., m1, m2 in Figure 5). Hence, the
positive events are replicated – they appear once for
the positive case and once for the concatenation of the
negative and positive events. The map in lines 6, 12
and 60 in Table 1 is used to keep track of the points
where this replication must occur. Once all processing
of the negative events has occurred (line 59), the last
state for the negative events is stored in the map
(curr_state at line 60). Lines 11-14 paste the positive
events onto the end of the last state for the negative
events. This is done by querying the map to return the
sub-state machine corresponding to the positive events
(getsubFSM at line 12) and then copying this sub-state
machine to the end of the negative events (line 13).

3.2 Level 2 Synthesis

Table 2 gives the algorithm for converting a level 2
scenario chart into a HFSM. Again, the algorithm is
given for a single object O but is easily extended to
generate HFSMs for all participating objects.

The input is a set of scenario nodes S1,…,Sp. S1 is
the initial node of the scenario chart and Sp and Sp-1 are
finalSuccess and finalFailure nodes, respectively. The
scenario chart also contains regions r1,…,rq where each
region contains a set of scenario nodes. Arrows a1,…,ar
are from sets of scenarios or regions to sets of
scenarios or regions. The output is a HFSM for O.

The Main procedure (lines 1-33) starts by
recursively applying the level 3 synthesis algorithm to
each scenario node (lines 2-7). The level 3 algorithm
returns, for each scenario node, a HFSM for O with
special first and last states (lines 5-6) that denote the
initial and final state of the interaction diagram
associated with the scenario node. (As stated earlier,
these are given by grey and black states, respectively,
in Figures 5 and 6.) Main then creates a new HFSM for
O and copies there the states and transitions from each
of the state machines derived from the scenario nodes
(lines 8-18). This new HFSM has special final success

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

(see line 10) and final failure (see line 11) nodes that
will be required during level 1 synthesis to connect the
HFSMs for O generated for each use case node.

Input. A scenario chart, containing object O, and consisting
of scenarios S1,…,Sp (S1, Sp and Sp-1 being initial and
finalSuccess/finalFailure nodes), regions r1,…,rq, arrows
a1,…,ar between S1,…,Sp and/or r1,…,rq
Output. HFSM for O

1 Main.
2 for i = 1,…, p do
3 // Apply level 3 synthesis for Si.
4 let Ci := Si..convertToFSM(O);
5 let firsti := Ci..getFirst();
6 let lasti := Ci..getLast();
7 done
8 let C := new HFSM();
9 C.setFirst(n0 := new State());
10 C.setLastSuccess(n1 := new State());
11 C.setLastFailure(n2 := new State());
12 let curr_state := n0 ;
13 createTransition (n0, first1, nil, nil);
14 createTransition (lastp-1, n1, nil, nil);
15 createTransition (lastp, n2, nil, nil);
16 for i = 1,…, p do
17 Copy states and transitions from Ci to C
18 done

19 for i = 1,…,q do
20 C.addState(hierarchicalStatei := new State());
21 foreach Sj in ri
22 Place Cj inside hierarchicalStatei
23 done

24 for i = 1,…,r do
25 case type(ai) in
26 “sequential”: seqTransition (source(ai), target(ai));
27 “par”: parTransition(source(ai), target(ai));
28 “preempt”: preemptTransition(source(ai), target(ai));
29 “suspends”: suspendTransition(source(ai), target(ai));
30 “neg”: negTransition(ai);
31 esac
32 done
33 return;

34 seqTransition (Scenario Sj, Scenario Sk)
35 createTransition (lastj, firstk, nil, nil);
36 return;

37 preemptTransition (Scenario Sk, Region rj)
38 createTransition (hierarchicalStatej, firstk,

Sk.getFirstMessage(), nil);
39 return;

40 suspendTransition (Scenario Sk, Region rj)
41 createTransition (hierarchicalStatej, firstk,

Sk.getFirstMessage(), nil);
42 hierarchicalStatej.addHistoryMarker();
43 createTransition (lastk, hierarchicalStatej, nil, nil);

44 return;

45 parTransition (Scenario Set Zj, Scenario Set Zk)
46 OrthogonalState srcST = new State();
47 OrthogonalState destST = new State();
48 srcST.createRegions(Zj);
49 destST.createRegions(Zk);
50 createTransition(srcST, destST, nil, nil);
51 return;

52 negTransition (Region rj, Scenario Sk)
53 OrthogonalState negST = new State();
54 negST.createRegions({hierarchicalStatej, Sk});
55 let ERR_STATE := new state();
56 createTransition(lastk, ERR_STATE, nil, nil);
57 return;

Table 2: Scenario chart synthesis.

S1 S2

States
from S1

States
from S2

S1 S4

S5
S2

S3

States from S1

States from S2
States from S3 States from S5

States from S4

S1
S4

S2

S3 <<preempts>>
States from
S1, S2, S3 States

from S4

Preempting event from S4

e/

S1
S4

S2

S3 <<neg>>
States from
S1, S2, S3

States
from S4

ERR

Figure 6: Level 2 Synthesis Examples

Regions are handled by creating a new hierarchical
state (lines 19-23). This hierarchical state contains all
states generated for scenario nodes in that region.

Arrows are dealt with according to what type of
arrow they are (lines 24-33). Recall that the possible
types (see abstract syntax definition is Section 2.2) are
normal arrows (sequential transitions), parallel arrows,
preempting arrows, suspending arrows and negative
arrows. Figure 6 gives some simple examples.
(Suspension is not shown because it is similar to
preemption.) Sequential transitions merely connect
HFSMs generated for two scenario nodes (lines 34-36).
preemptTransition (lines 37-39) denotes the fact that a
scenario node, Sk,, preempts a region, rj. rj is
transformed into a hierarchical state. A transition
leaves this hierarchical state with event the first
message of Sk. This captures the fact that any state in
the region can be preempted by this message.
suspendTransition works similarly (lines 40-44). The
only difference between preemption and suspension is

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

that once the suspending scenario is finished, control
returns to the originating region. This is captured in the
HFSM by introducing a history marker in the
hierarchical state, so that the state caches its current
state on exit, and a transition that returns to the
hierarchical state once the suspending events are done.

Parallel arrows (lines 45-51) are converted into
orthogonal regions in the HFSM. Parallel arrows have
multiple source and target scenario nodes (hence, the
sets Zj, Zk in line 45). A state with orthogonal regions is
created to hold the source scenario nodes (with one
orthogonal region for each source node) and, similarly,
each target scenario node appears in the output in an
orthogonal region. A transition is then introduced in
the HFSM to handle the parallel arrow from the source
orthogonal state to the target orthogonal state.
Finally, negative arrows also result in orthogonal
regions in the output (lines 52-57). Negation is handled
by monitoring for the negative events and transitioning
to a special ERROR state if they occur. This is similar
to level 3 synthesis. At level 2, the negative events
under monitor are placed into an orthogonal region so
that if the sequence of negative events ever occurs
(even with other events interleaved), then the ERROR
state will be entered. Note that the interpretation of
negation is slightly different at level 2 than at level 3.
At level 2, a negative sequence may have other
messages interleaved with it. At level 3, however, the
negative sequence is the flattening of the neg
fragments. See [6] for details.

3.3 Level 1 Synthesis

Due to space restrictions, we do not give the
algorithm for level 1 synthesis. The algorithm is almost
identical to that in Table 2 except that level 1 use case
charts have only one type of final node. The other
difference is that HFSMs generated at level 1 are
connected taking into account final failure and final
success nodes generated at level 2.

3.4 Synthesis Example

This section gives an example of synthesis for the
use case chart of the shuttle system described in
Section 2. Figure 2 is the level 1 chart. Figures 3 and 4
are refinements. The shuttle system example was
specified completely in our SCASP tool. SCASP
implements the synthesis algorithm described in this
paper and allows the user to specify a use case chart
and to generate and view HFSMs graphically.

Figure 7 gives the HFSM generated for the Shuttle
class based on the use case chart defined in Figures 2-
4. Figure 7 is a simplified version of the full example
and was generated by giving very simple sequence

diagrams at level 3 for each scenario node. The full
example is reported on in Section 4 but the complete
HFSM cannot be given due to its size. (Note that both
preemption/suspension assume a priority of outermost
transition selection in the state machine semantics.)
However, even a simplified form of this example
shows the power of the synthesis algorithm because a
rich hierarchy of states is automatically generated.

ERR

sendCapital/ack
sendCapacity/ack

maintenaceReqd/
scheduleMaintenance

maintenanceDone/

newOrder/
makeBid transport/

informBroker

makepayment/

moveElsewhere/

retireShuttle/
ack

shuttleRetired/

Figure 7: HFSM Generated for Shuttle

There are a number of hierarchical states generated
in Figure 7. At the top level, there are two orthogonal
regions—one for maintenance and one for
transportation. This mirrors the parallel fork in Figure
2. The transportation region is further divided. The use
case chart region in Figure 2 (denoted by the dotted
rectangle) becomes a hierarchical state in Figure 7.
This entire hierarchical state is exited if the retirement
event occurs. This corresponds to the preempting
arrow in Figure 2. Within the hierarchical state for
transportation, there is a further division into
orthogonal regions. This is done to capture the negative
behavior from Figure 3. Recall that Figure 3 says that a
shuttle cannot move to an intermediate station while it
is transporting a passenger. If it does, the HFSM goes
into the special ERR state. This is captured in the
generated HFSM by introducing an orthogonal region
for the negative behavior that essentially monitors for
that behavior—if, at any point during the transport, the
event moveElsewhere arrives, then ERR is entered.

4. Results

As a preliminary validation of use case chart
synthesis, we implemented a prototype tool, SCASP,
that takes any use case chart as input and generates a
set of HFSMs, one for each object with state-dependent
behavior. SCASP is implemented as an Eclipse plugin
and the use case charts can be created using IBM

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

Rational Software Modeler (RSM) where each level is
represented using standard UML 2.0 notations.

So far, we have used SCASP to generate HFSMs
for a number of industrial or industrial-strength
examples. We applied it to a weather update subsystem
of an air traffic control system developed at NASA
[10]. We have also applied SCASP to a complete
version of the shuttle system case study already
introduced in this paper. SCASP can be applied at
multiple phases of the software lifecycle. It can be
applied during requirements development when the use
cases are black-box, with no internal details of the
system. Alternatively, it can be applied during
requirements analysis, when internal objects are
identified. For the shuttle system, we applied SCASP
at the requirements analysis phase. We used the shuttle
system as a term project in a software architecture and
design graduate course at George Mason University.
We then took student solutions to the requirements
analysis phase and reengineered them into a use case
chart specification. This involved taking a collection of
UML interaction diagrams and adding structure using
the 3-level layering in use case charts. We did not have
students write the use case charts directly because of
the training time that would be needed. This is
regarded as future work. Even so, this exercise showed
that it is possible to represent complex analysis models
with use case charts and, moreover, synthesis of
correct HFSMs can be automatically generated using
SCASP. Table 3 gives an indication of the complexity
of the use case chart for the shuttle system at the
analysis level and of the generated HFSMs.

The data in Table 3 provides evidence of the
scalability of the use case chart notation and the
synthesis algorithm. The example was industrial-
strength in size but also used many of the more
complex arrow types such as preemption and negation.
The 3-level structure of use case charts allow a wide
range of behavior to be specified in a controllable way.
If UML2.0 sequence diagrams alone had been used to
capture the same information, the number of modeling
elements needed would be at least an order of
magnitude larger. Indeed, it would be extremely
difficult if not impossible to capture some of the more
complex behavior, such as preemption.

The table also gives an indication of the size and
complexity of the HFSMs generated. These data do
not, of course, provide any evidence of how easy it is
to develop the use case chart.

Table 3: Size/complexity of shuttle system study
Use Case Chart Data
Node-related data
level 1 nodes
level 1 regions

7
1

level 2 nodes
level 2 regions

10
1

participating objects at level 3 (average per
sequence diagram)

7.2

interaction fragments at level 3 23
messages at level 3 144
Arrow-related data
arrows at level 1 of type:
 sequential
 parallel
 preempting
 negating

6
3
1
0

arrows at level 2 of type:
 sequential
 parallel
 preempting
 negating

2
0
0
1

Generated HFSM Data
state dependent objects
generated states
generated hierarchical states
generated orthogonal regions

7
117
4
9

generated transitions 184

5. Related Work

UML2.0 [4] introduces interaction overview
diagrams, a notation based on activity diagrams, for
specifying relationships between interaction diagrams
(e.g., sequence diagrams). Interaction overview
diagrams (IODs) can be used to more precisely
describe use cases by a set of interaction diagrams
connected by activity diagram relationships, e.g.,
concurrency. Whilst IODs provide much needed
expressiveness for relating interaction scenarios, their
semantics is still somewhat unclear since neither
activity nor interaction diagrams have a formal
semantics. In addition, IODs model only a single use
case at a time and do not specify relationships between
use cases. In essence, use case charts add a third layer
of relationships to IODs at the use case level (level 1).
They also introduce relationships that do not currently
exist in UML, as noted in Section 2. Some of these
relationships have been suggested by other authors –
e.g., Krüger [1] introduces preemption. There is no
existing synthesis algorithm for IODs or these
additional relationships.

The use of scenarios in requirements engineering,
has ranged from informal sketching to precise

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

specification [11]. The Inquiry Cycle [12] combines
goal-oriented requirements analysis with scenario
scripts and is extended in [13] by exception and
dependency analysis. CREWS-SAVRE [14] included a
technique for discovering scenarios using a library of
domain-specific alternative paths. [15] uses a notation
known as scenario networks to structure a scenario
walkthrough process. Use case charts are different in
that they remain very close to UML and so do not
require a significant learning curve.

There have been many papers on synthesizing state
machines from scenario-based notations such as UML
sequence diagrams [e.g., 9], message sequence charts
[e.g., 1, 16] and live sequence charts [2]. These
synthesis algorithms have to deal with the fact that
current notations do not allow easy specifications of
use case and/or scenario relationships. One approach
has been to try to infer these relationships
automatically using machine learning techniques ([3]).
Another has been to require the user to provide
additional information, in a non-standard way, that can
be used to infer the relationships (e.g., [9,1]). Use case
charts externalize these relationships. We believe that
there is no synthesis algorithm in the literature as
sophisticated as our algorithm for use case charts. Most
existing algorithms cannot generate hierarchy in the
state machines and cannot handle the rich set of
relationships that use case charts provide.

6. Conclusion and Further Work

This paper presented a new algorithm for
converting use-case based requirements into
hierarchical finite state machines (HFSMs). This
algorithm has been implemented in the SCASP tool
and supports automatic simulation and validation of
use case scenarios via conversion to executable
HFSMs. The algorithm is novel in that it works for a
very expressive use case language, use case charts,
suitable in particular for distributed, concurrent
systems. It is also novel in that the FSMs generated
contain rich hierarchy which makes the generated
FSMs easier for human consumption during later
stages of analysis and design. The algorithm was
validated on significant examples, including the use of
solutions to a large term project. In the future,
empirical studies will be undertaken to further evaluate
use case charts and the use of the generated HFSMs in
requirements validation.

7. References

[1] I. Krüger, “Distributed System Design with Message
Sequence Charts”, PhD Thesis, Technical University of
Munich, 2000.
[2] D. Harel, H. Kugler and A. Pnueli, "Synthesis Revisited:
Generating Statechart Models from Scenario-Based
Requirements", Formal Methods in Software and System
Modeling (H.-J. Kreowski et al, eds.), LNCS, Vol. 3393,
Springer-Verlag, 2005, 309-324.
[3] E. Mäkinen and T. Systä, “Minimally adequate teacher
synthesizes statechart diagrams,” Acta Informatica 38, 2002.
[4] Unified modeling language 2.0 specification, 2005.
http://www.omg.org.
[5] J. Whittle, “Specifying Precise Use Cases with Use Case
Charts,” Satellite Events at the MODELS 2005 Conference,
LNCS, Vol. 3844, Springer-Verlag, 2005, 290-301.
[6] J. Whittle, “A Formal Semantics of Use Case Charts,”
Technical Report ISE Dept, George Mason University, ISE-
TR-06-02. http://www.ise.gmu.edu/techrep
[7] Message Sequence Chart (MSC). Technical Report, 1996.
ITU-T Recommendation Z.120 (previously CCITT
Recommendation), Formal Description Techniques.
[8] University of Paderborn Software Engineering Group.
Shuttle system case study. http://wwwcs.uni-
paderborn.de/cs/ag-schaefer/CaseStudies/ShuttleSystem/.
[9] J. Whittle and J. Schumann. “Generating statechart
designs from scenarios.” In ICSE ’00: Proceedings of the
22nd international conference on Software engineering,
pages 314–323, New York, NY, USA, 2000. ACM Press.
[10] D. Denery, H. Erzberger, T. Davis, S.Green & B.
McNally, Challenges of Air Traffic Management Research:
Analysis, Simulation and Field Test. In AIAA Guidance,
Navigation and Control Conference, 1997.
[11] I. Alexander and N. Maiden (eds.) “Scenarios, Stories,
Use Cases: Through the System Development Lifecycle,”
John Wiley and Sons, 2004.
[12] C. Potts, K. Takahashi and A. Anton, “Inquiry-based
requirements analysis,” IEEE Software, 21-32, 1994.
[13] A. Sutcliffe, N. Maiden, S. Minocha and D. Manuel.
“Supporting scenario-based requirements engineering,” IEEE
Transactions on Software Engineering, 24(12), 1998.
[14] N. Maiden, “Crews-savre: Scenarios for acquiring and
validating requirements.” Journal of Automated Software
Engineering, 1997.
[15] T. Alspaugh and A. Anton, “Scenario networks for
software specification and scenario management.” IEEE
Transactions on Software Engineering, 2001.
[16] S. Uchitel, J. Kramer and J. Magee. “Synthesis of
Behavorial Models from Scenarios.” IEEE Transactions on
Software Engineering. 29(2), February 2003.

14th IEEE International Requirements Engineering Conference (RE'06)
0-7695-2555-5/06 $20.00 © 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

